
HYDROLOGICAL PROCESSES

(wileyonlinelibrary.com) DOI: 10.1002/hyp.8189

Regional flood frequency analysis using Bayesian generalized
least squares: a comparison between quantile

and parameter regression techniques

Khaled Haddad,1 Ataur Rahman1* and Jery R. Stedinger 2

1 School of Engineering, University of Western Sydney, Penrith, Sydney, Australia
2 School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA

Abstract:

Regression-based regional flood frequency analysis (RFFA) methods are widely adopted in hydrology. This paper compares two
regression-based RFFA methods using a Bayesian generalized least squares (GLS) modelling framework; the two are quantile
regression technique (QRT) and parameter regression technique (PRT). In this study, the QRT focuses on the development
of prediction equations for a flood quantile in the range of 2 to 100 years average recurrence intervals (ARI), while the PRT
develops prediction equations for the first three moments of the log Pearson Type 3 (LP3) distribution, which are the mean,
standard deviation and skew of the logarithms of the annual maximum flows; these regional parameters are then used to fit
the LP3 distribution to estimate the desired flood quantiles at a given site. It has been shown that using a method similar to
stepwise regression and by employing a number of statistics such as the model error variance, average variance of prediction,
Bayesian information criterion and Akaike information criterion, the best set of explanatory variables in the GLS regression
can be identified. In this study, a range of statistics and diagnostic plots have been adopted to evaluate the regression models.
The method has been applied to 53 catchments in Tasmania, Australia. It has been found that catchment area and design rainfall
intensity are the most important explanatory variables in predicting flood quantiles using the QRT. For the PRT, a total of four
explanatory variables were adopted for predicting the mean, standard deviation and skew. The developed regression models
satisfy the underlying model assumptions quite well; of importance, no outlier sites are detected in the plots of the regression
diagnostics of the adopted regression equations. Based on ‘one-at-a-time cross validation’ and a number of evaluation statistics,
it has been found that for Tasmania the QRT provides more accurate flood quantile estimates for the higher ARIs while the
PRT provides relatively better estimates for the smaller ARIs. The RFFA techniques presented here can easily be adapted
to other Australian states and countries to derive more accurate regional flood predictions. Copyright  2011 John Wiley &
Sons, Ltd.
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INTRODUCTION

Flood quantile estimation in ungauged catchments is
a common problem in hydrology. Regional flood fre-
quency analysis (RFFA) is often used for this purpose,
which is to ‘trade space for time’ (Hosking and Wal-
lis, 1997). Regression-based methods are widely used in
RFFA which is based on the concept that spatial vari-
ations in flood flow statistics are closely related with
variations in regional catchment and climatic character-
istics (Gupta et al., 2006; Pandey and Nguyen, 1999;
Nezhad et al., 2010). The most common form of the
regression approach is to develop a regression equation
for a flood quantile of interest, known as the quantile
regression technique (QRT) (Benson, 1962; Thomas and
Benson, 1970). The United States Geological Survey has
adopted the QRT as the standard RFFA method since the
1960s (Gupta et al., 1994).
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Hydrologists commonly use ordinary least squares
(OLS) estimators that are appropriate and statistically
efficient if the flow records are of equal length and if
concurrent flows between any pair of stations are uncor-
related (Tasker et al., 1986). These are often violated
with regional annual maximum flood series data. To over-
come the problems with the OLS regression, Stedinger
and Tasker (1985, 1986) developed a GLS model that
accounts for the differences in at-site record lengths and
inter-site correlation among at-site estimators. Stedinger
and Tasker (1985, 1986) showed in a Monte Carlo simu-
lation that the GLS estimators provide model regression
parameters with smaller mean-squared errors than the
competing OLS estimators, provide relatively unbiased
estimates of the variance of the regression parameters
and results in a more accurate estimate of the regression
model error. GLS regression has been widely adopted in
hydrology (Tasker and Stedinger, 1989; Madsen et al.,
1995; Madsen and Rosbjerg, 1997; Kroll and Stedinger,
1999; Reis et al., 2005; Eng et al., 2005; Griffis and Ste-
dinger, 2007; Gruber and Stedinger, 2008; Hackelbusch
et al., 2009; Micevski and Kuczera, 2009).

Copyright  2011 John Wiley & Sons, Ltd.

Hydrol. Process. 26, 1008–1021 (2012)
Published online 201 in Wiley Online Library29 June 1



Reis et al. (2005) and Gruber et al. (2007) introduced a
Bayesian analysis of the GLS model which provides more
accurate measure of the model error variance and a more
realistic description of the possible values of the model
error variance in cases where the method of moments
estimator of the model error variance as described by
Stedinger and Tasker (1985) may be zero or close to it;
this occurs when sampling errors dominate the regional
analysis.

As an alternative to the QRT, the parameters of a prob-
ability distribution can be regressed against the explana-
tory variables (Tasker and Stedinger, 1989; Madsen et al.,
2002). In the case of the log Pearson Type 3 (LP3) dis-
tribution, regression equations can be developed for the
first three moments, i.e. the mean, standard deviation and
skewness of the logarithms of annual maximum flood
series. For an ungauged catchment, these equations can
then be used to predict the mean, standard deviation and
skewness to fit an LP3 distribution. This method here
is referred to as ‘parameter regression technique’ (PRT).
The advantages of the PRT are that the estimated flood
quantiles from the fitted distribution increase consistently
with average recurrence intervals (ARI) and the flood
quantiles for any ARI (within the range of validity of the
method) can be estimated. However, there has been little
research on comparison of PRT with QRT in RFFA.

The objective of this paper is to compare the QRT and
PRT approaches under a Bayesian GLS modelling frame-
work. A method is presented for selecting the most appro-
priate set of explanatory variables in the GLS regression
by employing a number of statistics such as the model
error variance, average variance of prediction, Bayesian
information criterion, Akaike information criterion and
pseudo coefficient of determination values. In previous
applications of the GLS regression, explanatory variables
selected by the OLS regression using stepwise regres-
sion have generally been adopted. The method presented
here provides an improvement in selecting the right set
of predictor variables in the GLS regression. A num-
ber of statistics, diagnostic plots and one-at-a-time cross
validation approach have been adopted in evaluating the
regression models. The methods have been applied to a
data set from the state of Tasmania in Australia.

METHODS

Generalized least squares model description

The GLS regression assumes that the hydrological
variable of interest (e.g. a flood quantile or a parameter of
the LP3 distribution) denoted by yi for a given site i can
be described by a function of catchment characteristics
(explanatory variables) with an additive error (Reis et al.,
2005; Griffis and Stedinger, 2007):

yi D ˇ0 C
k∑

jD1

ˇjXij C υi, i D 1, 2, . . . , n �1�

where Xij�j D 1, . . . , k� are explanatory variables, ˇj is
the regression coefficient, υi is the model error which

is assumed to be normally and independently distributed
with model error variance �2

υ and n is the number of sites
in the region. In all cases only an at-site estimate of yi

denoted as Oyi is available. To account for the error in
this data, a sampling error �i must be introduced into the
model so that:

ŷ D Xb C h C d D Xb C ε where Oyi D yi C �i;

i D 1, 2, . . . , n �2�

Thus, the observed regression model error ei is the
sum of the model error υi and the sampling errors �i. The
total error vector (��2

υ �) has mean zero and a covariance
matrix:

E
[
eeT] D 3��2

υ � D �2
υ I C

∑
�ŷ� �3�

where
∑

�ŷ� is the covariance matrix of the sampling
errors in the sample estimators of the flood quantiles or
the parameters of the LP3 distribution, I is a (n ð n)
identity matrix. The covariance matrix for �i depends
on the record length available at each site and the cross
correlation among floods at different sites. Therefore, the
observed regression model errors are a combination of
time-sampling error �i and an underlying model error υi.

In this regional framework, �2
υ can be viewed as a het-

erogeneity measure. Madsen et al. (1997, 2002) showed
that the regional average GLS estimator is a general
extension of the record-length-weighted average com-
monly applied in the index-flood procedure; however,
the record-length-weighted average estimator neglects
intersite correlation and regional heterogeneity (Stedinger
et al., 1993; Stedinger and Lu, 1995).

The GLS estimator of b and its respective covariance
matrices for known �2

υ are given by:

ǑGLS D [
XT3��2

υ ��1X
]�1

XT��2
υ ��1ŷ �4�

[ ǑGLS] D [
XT3��2

υ ��1X
]�1

�5�

The model error variance �2
υ can be estimated by either

generalized method of moments (MOM) or maximum
likelihood (ML) estimators as described by Stedinger and
Tasker (1986). The MOM estimator is determined by iter-
atively solving Equation (6) along with the generalized
residual mean square error equation:

�ŷ − Xb̂GLS�T[ O�2
υ I C

∑
�ŷ�]�1�ŷ − Xb̂GLS�

D n � �k C 1� �6�

In some situations, the sampling covariance matrix
explains all the variability observed in the data, which
means the left-hand side of Equation (6) will be less than
n � �k C 1� even if O�2

υ is 0. In these circumstances, the
MOM estimator of the model error variance is generally
taken to be 0 (Stedinger and Tasker, 1985, 1986).

Bayesian GLS regression

Bayesian inference is an alternative to the classical
statistical approach. In a Bayesian framework, the param-
eters of the model are considered to be random variables,
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whose probability density function should be estimated.
Reis et al. (2005) developed a Bayesian approach to esti-
mate the regional model parameters and showed that the
Bayesian approach can provide a realistic description of
the possible values of the model error variance, especially
in the case where sampling error tends to dominate over
the model errors in the regional analysis.

With the Bayesian approach it is assumed here that
there is no prior information on any of the ˇ parameters;
thus a multivariate normal distribution with mean zero
and a large variance (e.g. greater than 100) is used as
a prior for the regression coefficient parameters as sug-
gested by Reis et al. (2005). This prior is considered to
be almost non informative, which produces a probability
distribution function that is generally flat in the region of
interest. The prior information for the model error vari-
ance �2

υ is represented by an informative one-parameter
exponential distribution, which represents the reciprocal
of the prior mean of the model error variance. Reis et al.
(2005) discusse the derivation of the choice of a prior
for the model error variance for regionalizing the skew.
For the regionalization of skew, we employed a value for
the prior mean of the model error variance equal to six
following Reis et al. (2005).

To derive the prior distribution for the standard devia-
tion, mean flood and quantiles of the LP3 distribution we
used an informative one-parameter exponential distribu-
tion where the reciprocal of the residual error variance
estimate taken from OLS regression is used as the prior
mean of the model error variance. For the mean flood and
flood quantiles, the model error variance tends to domi-
nate the regional analysis. In this case a zero or negative
value for the model error variance is highly unlikely.

SELECTION OF PREDICTOR VARIABLES

In the OLS regression, several statistics are used to jus-
tify the model selection such as the traditional coefficient
of determination (R2), F statistics, Durbin Watson Statis-
tics, Akaike information criterion (AIC) and Bayesian
information criteria (BIC); Gelman et al., (2004). Among
these statistics, the AIC and BIC penalize for the extra
complexity in the model, which means that an extra pre-
dictor variable must improve the model significantly to
justify its inclusion. A brief discussion below presents the
Bayesian GLS regression statistics that guided our model
selection procedure.

Average variance of prediction

In RFFA, the objective is to make prediction at both
gauged and ungauged sites; hence a statistic appropriate
for evaluation of model selection is the variance of pre-
diction, which in many cases depends on the explanatory
variables at both a gauged and ungauged sites. Hence,
Tasker and Stedinger (1989) suggested the use of the
average variance prediction (AVP).

By using a GLS regression model one can predict a
hydrological statistic on average over a new region. Thus,

this becomes the average variance of prediction AVPnew

for a new site which is made up of the average sampling
error and the average model error (Tasker and Stedinger,
1986). For Bayesian GLS analysis according to Gruber
et al. (2007):

AVPnew D E[�2
υ ] C 1

n

n∑
iD1

xiz[ˇjŷ]xT
i �7�

Also, if the prediction is for a site that was used in the
estimation of the regional regression model, the measure
of prediction AVPold requires an additional term:

AVPold D E[�2
υ ] C 1

n

n∑
iD1

xiVar[ˇjŷ]xT
i

� 2�2
υ xi�XT3�1X��1XT3�1ei �8�

where ei is a unit column vector with 1 at the ith row
and 0 otherwise.

Bayesian and Akaike information criteria

The Akaike information criterion (AIC) is given by
Equation (9), where �Y� is the log-likelihood maxi-
mized function with respect to the number of predictor
variables, n is the number of sites in the region (sample
size in the regression) and k is the number of predictor
variables in the fitted regression model. Here, �Y�is the
log-likelihood of Equation (1). The first term on the right-
hand side of Equation (9) measures essentially the true
lack of fit while the second term measures the estima-
tion uncertainty which is due to the number of predictor
variables.

AIC D �2�Y� C 2k �9�

In practice, after the computation of the AIC for all
of the competing models, one selects the model with the
minimum AIC value, AICmin. The Bayesian information
criterion (BIC) is very similar to AIC, but is developed
in a Bayesian framework:

BIC D �2�Y� C ln�n�k �10�

The BIC penalizes more heavily for small sample
sizes and models with higher values of k. Since �Y�
depends on the sample size, the competing models can
be compared using AIC and BIC only if fitted using the
same sample, but having different parameter estimators,
as done in this study.

REGRESSION DIAGNOSTICS

The assessment of the regional regression model is made
by using a number of statistical diagnostics such as a
pseudo-coefficient of determination and standard error
of prediction. An analysis of variance for the Bayesian
GLS models is undertaken to examine the sampling and
model errors. The Cook’s distance and the standardized
residuals are used to identify outlier sites; absence of
outlier in regression diagnostics indicates the overall
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adequacy of the regional model. These statistics are
described below.

Co-efficient of determination R2 and analysis of variance

The traditional coefficient of determination (R2) mea-
sures the degree to which a model explains the variability
in the dependent variable. It uses the partitioning of the
sum of squared deviations and associated degrees of
freedom to describe the variance of the signal versus
the model error. Traditionally, for OLS regression, the
total-sum-of-squared deviations about the mean (SST)
is divided into two separate terms, the sum-of-squared
errors explained by the regression model (SSR) and the
residual sum-of-squared errors (SSE), where SST D SSR
C SSE.

Reis et al. (2005) proposed a pseudo co-efficient
of determination (R

2
GLS) appropriate for use with the

GLS regression. For traditional R2, both the SSE and
SST include sampling and model error variances, and
therefore this statistic can grossly misrepresent the true
power of the GLS model to explain the actual variation in
the yi. Hence, for the GLS regression a more appropriate
pseudo co-efficient of determination is defined by:

R
2
GLS D n[ O�2

υ �0� � O�2
υ �k�]

n O�2
υ �0�

D 1 � O�2
υ �k�

O�2
υ �0�

�11�

where O�2
υ �k� and O�2

υ �0� are the model error variances
when k and no explanatory variables are used, respec-
tively. Here, R

2
GLS measures the improvement of a GLS

regression model with k explanatory variables against the
estimated error variance for a model without any explana-
tory variable. If O�2

υ �k� D 0, R
2
GLS D 1 as it should, even

though the model is not perfect because var[�i C υi] is
still not zero because var[�i] > 0. A pseudo analysis of
variance (ANOVA) table is used in GLS regression for
error variance analysis as presented by Reis et al. (2005)
and Griffis and Stedinger (2007).

Standard error of prediction

If the residuals have a nearly normal distribution, the
standard error of prediction in percent (SEP) for the true
flood quantile estimator is described by (Tasker et al.,
1986):

SEP�%� D 100 ð [exp�AVPnew� � 1]0Ð5 �12�

Cook’s distance and Z-score

Tasker and Stedinger (1989) developed measures such
as Cook’s distance (D) from an OLS to GLS case. Tasker
and Stedinger (1989) and Reis et al. (2005) suggested that
influence is large when D is greater than 4/n, where n is
the number of sites in the region.

Analysis of residuals provides a means of assessing
the model fit and identifying possible outliers. In this
study, the standardized residual (rsi) is used, which is the

residual ri divided by the square root of its variance. This
is calculated as:

rsi D ri

[
i � xi�XT3�1X��1xT
i ]0Ð5

where 
i is the diagonal of 3 �13�

To assess the adequacy of the model in estimating flood
quantiles, a Z score is used, which is defined as:

Zscore D LNQARI,i � LN OQARI,i√
�2

ARI,i C O�2
ARI,i

�14�

Here the numerator is the difference between the at-site
flood quantile and regional flood quantile (estimated from
the developed regression equation) and the denominator
is the square root of the sum of the variances of
the at-site (�2

ARI,i) and regional ( O�2
ARI,i) flood quantiles

in natural logarithm space. It is reasonable to assume
that the errors in the two estimators are independent
because QARI,i is an unbiased estimator of the true
quantile estimators based upon the at-site data, whereas
the error in OQARI,i is mostly due to the failure of the
best regional model to estimate accurately the true at-site
flood quantile. The use of log space makes the difference
approximately normally distributed and hence enables the
use of standard statistical tests.

EVALUATION STATISTICS

We evaluated the overall performance of the Bayesian
GLS regression method by using one-at-a-time cross
validation. The site of interest was left out in building the
model so it was in effect being treated as an ungauged
site. This was repeated for all the sites considered in
the study. The advantage of the one-at-a-time cross-
validation procedure is that it generates quantile or
moment estimates for the site of interest which are
not computed using the record available for that site.
To compare model adequacy we adopted a number
of evaluation statistics (Equations (15) to (19)) being
the mean percent relative error (MPRE), Nash-Sutcliffe
coefficient of efficiency (CE), root mean square error
(RMSE) in log space and the RMSE (%) and the
mean ratio of the predicted flow to observed flow.
These evaluation statistics were applied to assess the
performances of the Bayesian GLS-QRT and the GLS-
PRT methods.

MPRE D 100

n

n∑
iD1

abs
(

Qpred � Qobs

Qobs

)
�15�

CE D 1 �

n∑
iD1

�Qpred � Qobs�
2

n∑
iD1

�Qobs � Q�2

�16�

RMSE D
√∑

�log Qpred � log Qobs�
2

n
�17�
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RMSE�%� D 100�e5Ð302�2
e � 1�1/2 �18�

where �e is the RMSE in log base 10 units (Tasker et al.,
1996).

Mean Ratio D 1

n

n∑
iD1

Qpred

Qobs
�19�

where Qobs is the observed flood quantile obtained from
at-site flood frequency analysis, Qpred is the predicted
flood quantile obtained from the Bayesian GLS-QRT
or Bayesian GLS-PRT based on the one-at-a-time cross
validation approach, Q is the mean of the Qobs values for
a given ARI and n is the number of sites.

The RMSE (%) and MPRE provide an indication of
the overall accuracy of a model. The CE provides an
indication of how good a model is at predicting values
in relation to the mean value. The CE ranges from �1
in the worst case to C1 for a perfect model. The average
value of the Qpred/Qobs ratio gives an indication of the
degree of bias (i.e. systematic over- or under estimation),
where a value of 1 indicates a good average agreement
between the Qpred and Qobs. A Qpred/Qobs ratio value in
the range of 0Ð5 to 2 may be regarded as a ‘desirable
estimate’, a value smaller than 0Ð5 may be regarded
as ‘gross underestimation’ and a value greater than 2Ð0
may be regarded as ‘gross overestimation’. It should
be mentioned here that these are only arbitrary limits
and would provide a reasonable guide about the relative
accuracy of the methods as far as the practical application
of the methods is concerned. In applying these evaluation
statistics to compare the alternative models, factors such
as data error (e.g. measurement error and error due to
rating curve extrapolation) and the error associated with
the at-site flood frequency analysis were not considered.

AT-SITE FLOOD FREQUENCY ANALYSIS AND
QUANTILE AND PARAMETER REGRESSION

TECHNIQUES

For at-site flood frequency analysis, the LP3 distribution
was adopted based on the findings of previous studies
(Haddad and Rahman, 2010; I. E. Aust., 1987). At-site
flood quantiles for ARIs of 2, 5, 10, 20, 50 and 100 years
were estimated using FLIKE (at-site flood frequency
analysis software) with the LP3 distribution and Bayesian
parameter estimation procedures as described in Kuczera
(1999). No prior information was used in fitting the LP3
distribution. The parameters of the LP3 distribution were
also extracted from FLIKE software.

To regionalize the flood quantiles the sampling covari-
ance matrix () of the LP3 distribution is required. Tasker
and Stedinger (1989) and Griffis and Stedinger (2007)
provide the approximate estimator of the components of
 matrix of the LP3 distribution. The skew and stan-
dard deviation in the  matrix are subject to estimation
uncertainty. In this study to avoid correlation between
the residuals and the fitted quantiles, the (i) inter site cor-
relation between the concurrent annual maximum flood

series (�i1,i2 ) was estimated as a function of the distance
between sites i1 and i2 (ii) the standard deviations �i1 and
�i2 were estimated using a separate OLS/GLS regression
using the explanatory variables used in the study (given in
Section 4) and (iii) the regional skew was used in place
of the population skew � as suggested by Tasker and
Stedinger (1989). This analysis above used the regional
estimates of the standard deviation and skew obtained
from Bayesian GLS regression. The detailed information
on the covariance matrices associated with the standard
deviation and skew can be found in Reis et al. (2005)
and Griffis and Stedinger (2007).

For the PRT, we adopted the GLS regression (Tasker
and Stedinger, 1989 and Griffis and Stedinger, 2007)
using a Bayesian framework (Reis et al., 2005) to
develop regression equations for the parameters of the
LP3 distribution (i.e. mean , standard deviation �, and
skew coefficient � of the logarithms of the annual maxi-
mum flood series). The regional values of standard devi-
ation and skew were taken from the  matrix of the flood
quantile modelling as mentioned above. The covariance
matrix for the mean flood was obtained following Ste-
dinger and Tasker (1986)

DATA DESCRIPTION

A total of 53 catchments were selected from Tasmania
for this study. Tasmania is the 26th largest island in the
world with an area of 68 401 km2. Tasmania’s climate is
different from the rest of Australia due to its latitude and
exposure to the Southern Ocean. Although Tasmania is
relatively low-lying (the highest point is about 1600 m),
it is Australia’s most mountainous state, with no truly flat
terrain. The major mountain ranges lie along the Western
half of the state, starting at the coast in the south-west and
extending inland. Although the eastern half of the state
is generally lower and flatter, there are several significant
mountain ranges in the east. Almost all the major rivers
in Tasmania begin in the central highlands and flow
to the coast. Given the western orientation of both the
weather and the topography, most of the precipitation
falls across to its west coast. The eastern region of the
state is much drier. In the east of the state, the largest
rainfall events occur in the warmer spring and summer
months when low pressure systems in the Tasman Sea
can direct an easterly onshore flow over Tasmania. The
heaviest rainfalls in the west of the state are due to the
passage of fronts, sometimes associated with an intense
extratropical cyclone with a westerly or southwesterly
airstream.

The elevations of the 53 selected catchments range
from 120 to 1300 m (average: 478 m, 21 catchments
are over 500 m and 16 catchments are below 300 m).
The mean annual rainfall ranges from 520 to 3014 mm
(median: 1046 mm). The catchment areas are in the
range of 1Ð3–1900 km2 (median: 158 km2 and mean:
323 km2). The selected catchments are mainly unreg-
ulated and have not been affected by major land use
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changes. The streamflow data of these stations were
prepared following stringent procedures as described in
Haddad et al. (2010). The lengths of the annual max-
imum flood series in the catchments vary between 19
and 74 years (median: 28 years, mean: 30 years). Some
35 catchments (66% overall) have record lengths in the
range of 19 to 30 years, 12 (23% overall) in the range
of 31 to 40 years and 6 (11% overall) in the range of
41 years and greater.

Based on the findings from previous studies (e.g. Rah-
man, 2005), a total of six explanatory variables were
used, as outlined below: (i) catchment area expressed in
km2 (area); (ii) design rainfall intensities (mm/h) for the
2 years average recurrence interval (ARI) with 1 h dura-
tion (2I1) and 2 years ARI with 12 h durations (2I12)
(range: 3Ð08 to 6Ð33 mm/h and median: 4Ð39 mm/h),
50 years ARI with 1 h duration (50I1) and 50 years ARI
with 12 h duration (50I12), design rainfall intensity val-
ues IARI,tc [where ARI D 2, 5, 10, 20, 50 and 100 years
and tc D time of concentration (h), estimated from
tc D 0Ð76(area)0Ð38]; (iii) mean annual rainfall expressed
in mm/year (rain); (iv) mean annual evapo-transpiration
expressed in mm/y (evap) (range: 757 to 1027 mm/year,
median: 865 mm/year); (iv) stream density expressed in
km/km2 (sden; range: 0Ð15 to 1Ð94 km/km2, median:
1Ð35 km/km2); (v) main stream slope expressed in m/km
(S1085; range: 0Ð10 to 87Ð15 m/km, median: 12Ð5 m/km);
and (vi) forest cover expressed as a percentage (%) of
catchment area (forest ; range: 4 to 99%, median: 68%).
It was found that a simple natural logarithmic trans-
formation of the dependent and independent variables
(explanatory variables) was sufficient for achieving near-
linearity in regression analysis and thus was adopted here.
A log-transformed explanatory variable was centred by
subtracting its log-mean value so that the intercept term
in the regression equation represents the mean of the log-
arithm of the observed dependent variable.

RESULTS

Selection of predictor variables

A total of 17 (for the mean, standard deviation and
skew models) and 25 (for the flood quantiles) different
combinations of explanatory variables were considered in
selecting the best set of predictors. These combinations
are listed in Table A1 in the Appendix. For each of these
combinations, the model error variance �2

υ , standard error
of the model error variance, R

2
GLS, BIC, AIC, AVPnew

(AVPN) and AVPold (AVPO) were examined to identify
the best set of predictor variables in the GLS regression.

Figure 2A shows the model error variance, standard
error of the model error variance and R

2
GLS values

for the mean flood model. Here combination 6 (con-
stant /area/2I12) has the smallest model error variance
(�2

υ D 0Ð35 and standard error D 0Ð066) and the highest
R

2
GLS. The posterior expected values for ˇ1 and ˇ2 were

approximately 3 and 16 times of the posterior standard
error values which support the inclusion of both of the

predictor variables area and 2I12 in the model. Figure 2B
shows that combination 6 has the smallest BIC, AIC,
AVPN and AVPO values. Based on these results, combi-
nation 6 was selected as the best set of predictor variables
for the mean flood model. The same procedure was fol-
lowed for selecting the best combination of predictor
variables for the models of standard deviation, skew and
flood quantiles. The best combination for the standard
deviation model was combination 17 (constant/rain). For
the skew model, combination 4 (constant/area/50I1) was
found to be the best set of predictor variables. Figures A1
and A2 in the Appendix present the different statistics for
the skew model.

The best set of predictor variables for each of the
flood quantile models (ARIs of 2, 5, 10, 20, 50 and
100 years) was selected following the above procedure.
The results for ARI of 20 years are presented below.
Here, combination 6 (constant/area/50I12) showed the
lowest model error variance (�2

υ D 0Ð30 and standard
error D 0Ð071). The posterior expected values for ˇ1 and
ˇ2 were approximately 15 and 5 times of the posterior
standard error values which support the inclusion of both
of the predictor variables area and 50I12 in the model.
For all the other ARIs, combination 6 was found to be
the best set of predictor variables.

Analysis of Variance

Tables I to IV present pseudo ANOVA for the
Bayesian GLS regression models for the first three
moments of the LP3 distribution and flood quantile of
the ARI of 20 years. The ANOVA table describes how
much of the variation in the observations can be attributed
to the regional model, and how much of the residual vari-
ation can be attributed to the model error and sampling
error, respectively. The pseudo ANOVA tables for the
flood quantile models of ARIs of 2 and 100 years are
presented in Tables A2 and A3 in the Appendix.

One can see that for the three moments of the LP3
distribution, the sampling error increases with the order

Figure 1. Location of study catchments in Tasmania, Australia
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Figure 2. Selection of explanatory variables for the Bayesian GLS regression model for the mean flood. MEV D model error variance

of the moment (i.e. an increase in the error variance
ratio, EVR, which is the ratio of the sampling error
to the model error). For the mean flood and standard
deviation models, the model error dominates the regional
analysis. This is more pronounced for the mean flood
model, where the sampling error variance is only 6%
of the model error variance, while the sampling error
variance for the standard deviation model is 54% of the
model error variance. Based on the model error variance,
the mean flood has the greatest heterogeneity associated
with it as compared to the standard deviation and skew
models. For the skew model, EVR D 9, which means
that sampling error is nine times higher than the model
error. This clearly shows that a Bayesian GLS is the
right modelling choice for the skew rather than the OLS

one. Another important observation is that if a method of
moment estimator was used to estimate the model error
variance �2

υ for the skew model, the model error variance
would have been underestimated as the sampling error
has heavily dominated the regional analysis. In this case,
the Bayesian procedure used in this study has provided a
reasonably accurate estimate of the model error variance
because it represents the values of �2

υ by computing
expectations over the entire posterior distribution.

The pseudo ANOVA tables of the flood quantiles
show that sampling error variance increases with increas-
ing ARIs as expected. The flood quantile of ARI of
2 years has an EVR of only 2%, i.e. it has the small-
est sampling error variance and the highest model error
variance. This means that based on the model error
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Table I. Pseudo ANOVA table for the mean flood model (Com-
bination 6)

Source Degrees of freedom Sum of squares

Model k D 3 n��2
υ0 � �2

υ � D 30Ð5
Model error υ n � k � 1 D 48 n��2

υ � D 17Ð8
Sampling error � n D 52 tr[� Oy�] D 1Ð13
Total 2n � 1 D 103 Sum of the above

D 49Ð44
EVR 0Ð06

Table II. Pseudo ANOVA table for standard deviation model
(Combination 17)

Source Degrees of freedom Sum of squares

Model k D 2 3Ð58
Model error υ n � k � 1 D 49 3Ð60
Sampling error � n D 52 1Ð94
Total 2n � 1 D 103 9Ð12

EVR 0Ð54

Table III. Pseudo ANOVA table for skew model (Combination
4)

Source Degrees of freedom Sum of squares

Model k D 3 0Ð62
Model error υ n � k � 1 D 48 1Ð74
Sampling error � n D 52 15Ð5
Total 2n � 1 D 103 17Ð84

EVR 9Ð0

Table IV. Pseudo ANOVA table for flood quantile model (ARI
D 20 years; Combination 6)

Source Degrees of freedom Sum of squares

Model k D 3 34Ð30
Model error υ n � k � 1 D 48 15Ð49
Sampling error � n D 52 2Ð08
Total 2n � 1 D 103 51Ð9

EVR 0Ð13

variance the flood quantile model of ARI of 2 years
experiences the greatest regional heterogeneity as com-
pared to flood quantile models of higher ARIs. For
the 100 years ARI, the EVR is 17% which suggests
that the Bayesian GLS model is quite appropriate for
modelling the larger ARI flood quantiles for the study
data set.

Regression diagnostics

To assess the adequacy of the Bayesian GLS regression
models Cook’s distance values were calculated. No
outlier/influential sites were found for the mean, standard
deviation, and flood quantile models. For the skew model
(Figure 3), sites 8 and 50 were above the threshold value
of 0Ð076 (i.e. 4/53, where 53 is the total number of
sites). Site 8 showed the largest standardized residual
value. The flow data, site history, and flood frequency

plots of these two sites were examined. It was found
that site 8 had a record length of 33 years (top 20%)
and a very small annual maximum flow in 1968 which
is not surprising as this was a drought year. This small
flow caused a large negative skew of �1Ð60 for the site.
Site 50 had record length of 46 years (fifth largest record
length) and a skew value 1Ð15, and it did show the largest
influence value (Figure 3). The regression analysis was
repeated by removing these two sites. Indeed site 8 did
influence the analysis with a decrease in the expected
model error variance �2

υ from 0Ð052 to 0Ð034. The AVPO
and AVPN dropped notably from 0Ð073 and 0Ð067 to
0Ð053 and 0Ð049, respectively. The R

2
GLS also increased

from 36 to 53%, which seems to be a remarkable increase.
The effective record length based on AVPN of 0Ð049 in
this case is 122 years (Combination 4) which is nearly 4
times the average record length for Tasmania. Site 8 did
therefore influence the results notably and was therefore
removed from the database in subsequent analyses. The
removal of site 50 resulted in little improvement in the
skew model with a negligible increase in R

2
GLS (55%) and

a slightly smaller �2
υ (0Ð032) and was therefore retained.

To assess that the underlying assumption of normal-
ity of the residuals, the standardized regression residu-
als (obtained from Equation 13) versus predicted values
(obtained from one-at-a-time cross validation) were plot-
ted. Figure 4 shows the plots for the skew model and
flood quantiles for the ARI of 20 years. If the under-
lying assumption is satisfied, the standardized residuals
should not be of greater magnitude than š2. A reason-
able assumption is that 95% of the standardized residuals
should fall between š2, which is the case in Figure 4.
Also no specific pattern can be identified in the plot with
the standardized residuals being nearly equally distributed
below and above zero. Similar results were obtained
for the mean, standard deviation, and other flood quan-
tile models. Statistical hypothesis tests using both the
Kolmogorov–Smirnov and Anderson–Darling tests for
normality were applied at the 10% level of significance
and it was found that the residuals were approximately
normally distributed for all the ARIs (2 to 100 years for
both QRT and PRT).

The QQ-plots of the standardized residuals (Figure 5
for skew model and flood quantile for ARI of 20 years)
show that the assumption of normality for the standard-
ized residuals is well satisfied with all the points closely
following a straight line. If the standardized residuals
were indeed normally and independently distributed with
mean 0 and variance 1, the slope of the best fit line in the
QQ-plot, which can be interpreted as the standard devi-
ation of the normal score (or Z-score) of the quantile,
should approach 1 and the intercept, which is the mean
of the normal score of the quantile should approach 0
as the number of sites increases. Figure 5 indeed shows
that the fitted lines passes through the origin (0, 0) and
has a slope approximately equal to 1. These results indi-
cate that the developed prediction equations satisfy the
homogeneity and normality of the residual assumptions
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Figure 4. Standardized residuals vs. predicted values for the skew and flood quantiles of ARI D 20 years

quite well. Similar results were also found for the mean,
standard deviation and other flood quantile models.

The coefficients of the regression models, R
2
GLS and

SEP values are presented in Table V. It should be noted
that to implement the QRT only two predictor variables
are required whereas, PRT needs four predictor variables.
The significance of the regression coefficient values
provided in Table V was evaluated using the Bayesian
plausibility value (BPV) as developed by Reis et al.

(2005) and Gruber et al. (2007). The BPV allows one
to perform the equivalent of a classical hypothesis P-
value test within a Bayesian framework. The advantage
of the BPV is that it uses the posterior distribution of each
parameter, which also reflects the prior. The BPV values
for the regression coefficients associated with the QRT
in Table V over all the ARIs were between 2 and 8% for
the variable area and 0Ð000% for design rainfall intensity
50I12. This justifies the inclusion of predictor variables
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Figure 5. QQ-plot of the standardized residual (eq. (13)) vs. Z score of the fitted quantiles (eq. (14)) (skew model above and flood quantile of ARI
D 20 years model below)

Table V. Regional Bayesian GLS regression equations for the
mean (), standard deviation (�), skew (�) and flood quantiles

Model/ARI (years) Coefficients R
2
GLS (%) SEP (%)

ˇ0 ˇ1 ˇ2

Parameter regression technique (PRT)
Mean,  4Ð0 0Ð90 3Ð85 86 67
Standard deviation, � 0Ð64 0Ð55 — 53 28
Skew, � �0Ð05 0Ð07 1Ð20 52 22

Quantile regression technique (QRT)
2 4Ð18 0Ð91 3Ð35 76 83
5 4Ð59 0Ð89 2Ð80 82 61
10 4Ð87 0Ð85 2Ð57 84 58
20 5Ð09 0Ð84 2Ð39 83 58
50 5Ð45 0Ð84 2Ð23 82 62
100 5Ð48 0Ð82 2Ð02 79 66

The SEP% and R
2
GLS values are obtained from one-at-a-time validation.

 D ˇ0 C ˇ1 ln�area� C ˇ2 ln�2I12�

� D ˇ0 C ˇ1 ln�rain�

� D ˇ0 C ˇ1 ln�area� C ˇ2 ln�50I1�

ln�QARI� D ˇ0 C ˇ1 ln�area� C ˇ2 ln�50I12�

area and 50I12 in the prediction equations for QRT. The
BPVs for the skew model were 23 and 11% for area
and 50I1, respectively, indicating that these are not very
good predictors for skew in this particular case. Indeed
Figure A1 reveals that the model error variances among
the different combinations are practically the same, this,
and the results from the BPVs suggest a regional constant
skew model may be adequate for Tasmania similar to
other studies (e.g. Reis et al., 2005; Gruber and Stedinger,
2008). The BPVs for the mean model were close to
1% for both the predictor variables. For the standard
deviation model, the BPV for the predictor variable rain
was 1%.

The average SEP was calculated using Equation (12)
for the flood quantiles and the first three moments of
the LP3 distribution from one-at-a-time cross validation.
Equation (12) is only valid if the residuals closely follow
a normal distribution (this assumption has been largely
satisfied as discussed above). The SEP values for the
first three moments of the LP3 distribution are 67, 28,
and 22% respectively. The mean flood has the highest
SEP value (i.e. shows greater heterogeneity than the
standard deviation and skew model). The SEP for the
flood quantile model of ARI of 2 years is 83%, which
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Table VI. Performance statistic results for one-at-a-time valida-
tion for Bayesian GLS-QRT and Bayesian GLS-PRT for MPRE

(%), CE and RMSE (%) and mean ratio over the 52 sites

ARI (years) MPRE (%) CE RMSE (%) Mean ratio

Model PRT QRT PRT QRT PRT QRT PRT QRT

2 33 38 0Ð93 0Ð60 70 106 1Ð22 1Ð52
5 35 34 0Ð85 0Ð71 69 74 1Ð14 1Ð19
10 34 30 0Ð77 0Ð78 69 69 1Ð13 1Ð17
20 36 27 0Ð68 0Ð81 73 71 1Ð14 1Ð16
50 39 27 0Ð53 0Ð75 81 77 1Ð15 1Ð15
100 49 33 0Ð41 0Ð57 86 73 1Ð17 1Ð11

is notably higher than that of the mean flood (Table V).
For the rest of the ARIs, the SEP values are lower than
that of the mean flood model except for the 100 years
ARI for which the SEP values are very similar for
these two cases. The lowest SEP values were found for
ARI of 10 and 20 years (58%). The ARIs of 10 and
20 years also showed the highest R

2
GLS values (84 and

83%, respectively) among all the ARIs. It may be noted
here that the SEP values obtained here are relatively high,
which is due to the model error dominating the total error
in the regional analysis as shown in the ANOVA results
(e.g. Tables I, II, and IV).

Evaluation statistics

Table VI summarizes the evaluation statistics for the
Bayesian GLS-QRT and Bayesian GLS-PRT models.
These values are based on the independent testing of the
prediction equations from one-at-a-time cross validation
approach. The MPRE value for the PRT model of ARI
of 2 years is 5% smaller than that of the QRT. However,
for the ARIs of 5 to 100 years the QRT shows relatively
smaller (by 1–16%) MPRE values. In relation to CE,
the PRT provides much higher values (i.e. better model
performance) than the QRT for 2 and 5 years ARIs. For
10 to 100 years ARIs, the QRT shows higher CE values.

The RMSE (%) values for both the QRT and PRT are
very similar for the 10 and 20 years ARIs. The RMSE
(%) values for 2 and 5 years ARIs for the PRT model is
36 and 5% smaller than that of the QRT model. For 50
and 100 years ARIs, the RMSE (%) values for the QRT
models are 4 and 13% smaller than the PRT models.

Finally the ratio Qpred/Qobs values were assessed. Here
Qpred values were obtained from one-at-a-time cross
validation. Based on the average values over the 52 sites,
QRT shows much overestimation for 2 years ARI. For the
other ARIs, the ratio values are quite similar. Based on
the criteria mentioned in Section 2Ð5; out of the 312 cases
(6 ARIs and 52 sites), QRT and PRT produce 254 and 232
cases, respectively, with a ‘desirable estimation’, which
is equivalent to 81 and 74% of the cases, respectively.
The PRT, however shows more ‘acceptable estimation’
for ARI of 2 and 5 years.

Overall, the above results demonstrate that the QRT
performs slightly better than the PRT for ARIs of 10 to
100 years and PRT performs relatively better for ARIs

of 2 and 5 years. It should be mentioned here that the
adopted validation procedure favours the QRT over the
PRT because in the QRT the quantiles are used directly
to develop the prediction equations as well as in the
validation purpose, however in the case of PRT the
prediction equations are developed for the moments of
the distribution and validation is made with the estimated
quantiles from the fitted distribution. Nevertheless, the
PRT has performed very similarly to the QRT, which
shows that the PRT is a viable approach for RFFA as an
alternative to QRT.

CONCLUSIONS

This article compares two regression-based RFFA meth-
ods that employ a Bayesian Generalized Least Squares
framework: quantile regression technique (QRT) and
parameter regression technique (PRT). It has been shown
that using a method similar to stepwise regression, the
best set of predictor variables in the Bayesian GLS regres-
sion can be identified by employing a number of statistics
such as the model error variance, average variance of pre-
diction, Bayesian information criterion and the Akaike
information criterion. The method is applied to 53 catch-
ments in Tasmania, Australia. It has been found that
catchment area and design rainfall intensity are the most
important explanatory variables for the flood quantile
estimation using the QRT. For the PRT, four explana-
tory variables were employed for predicting the first three
moments of the LP3 distribution. The developed regres-
sion models have satisfied the underlying model assump-
tions quite well. No outlier sites have been detected in the
regression diagnostic plots associated with the adopted
models. The flood quantiles obtained from the developed
prediction equations (based on one-at-a-time cross val-
idation approach) have been compared with the at-site
flood frequency estimates using a number of evaluation
statistics. These results have shown that for Tasmania
the QRT performs slightly better than PRT for higher
ARIs (10–100 years), while the PRT performs better for
smaller ARIs (2 and 5 years). Overall, there is only a
modest difference between the performances of the QRT
and PRT, and hence it may be argued that the PRT is
a viable alternative to the QRT in RFFA. The RFFA
techniques presented here can easily be adapted to other
Australian states and countries to derive more accurate
regional flood predictions.
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APPENDIX

Table AI. Combinations of explanatory variables in Bayesian
GLS regression (Const means the intercept term in the regression
equation, the explanatory variables are described in Section 4)

Combination Combinations for
mean, standard
deviation and
skew models

Combinations for
flood quantile
model

1 Const Const
2 Const, area Const, area
3 Const, area, (2I1) Const, area, (2I1)
4 Const, area, (50I1) Const, area, (2I12)
5 Const, area, (50I12) Const, area, (50I1)
6 Const, area, (2I12) Const, area, (50I12)
7 Const, area, rain Const, area, rain
8 Const, area, for Const, area, for
9 Const, area, evap Const, area, for, evap
10 Const, area, S1085 Const, area, IARI

11 Const, area, sden Const, area, evap
12 Const, sden, rain Const, area, S1085
13 Const, for, rain Const, area, sden
14 Const, S1085, for Const, sden, rain
15 Const, evap Const, for, rain
16 Const, rain, evap Const, area, (50I12), rain
17 Const, rain Const, area, (50I12), sden
18 — Const, area, (50I12),

rain, evap
19 — Const, area, (50I12),

IARI, evap
20 — Const, area, (50I12),

IARI, rain, evap
21 — Const, area, (50I12),

IARI, sden
22 — Const, area, (50I12),

IARI, S1085
23 — Const, area, IARI, evap
24 — Const, area, IARI, rain
25 — Const, area, (2I1), IARI

Table A2. Pseudo ANOVA table for flood quantile model (ARI
D 2 years) (Combination 6)

Source Degrees of Freedom Sum of Squares

Model k D 3 21Ð20
Model error υ n � k � 1 D 48 28Ð2
Sampling error � n D 52 0Ð91
Total 2n � 1 D 103 50Ð3

EVR 0Ð03

Table A3. Pseudo ANOVA table for flood quantile model (ARI
D 100 years) (Combination 6)

Source Degrees of freedom Sum of Squares

Model k D 3 30Ð70
Model error υ n � k � 1 D 48 19Ð04
Sampling error � n D 52 3Ð25
Total 2n � 1 D 103 52Ð99

EVR 0Ð17
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Figures A1 and A2. Various statistics for selecting the best set of predictor variables for the skew model
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