Unit 5 Applications Physical Hydrometeorology

1. All Students: Use the figure below and determine the mean precipitation in the catchment using the Thiessen polygon method. This catchment has the 8 gauging stations shown on the sheet and precipitation is given in cm. Draw the polygons. Use the squares of the sheet to estimate the corresponding Thiessen polygon areas in km^{2} under the assumption one square corresponds to $1 \mathrm{~km}^{2}$.
(a) Compute the average precipitation over the basin. Recall the formula was

$$
P=\frac{1}{A} \sum_{j=1}^{n} P_{i} a_{i} \quad \text { with } \quad \sum_{i=1}^{n} a_{i}=A
$$

Use all sites when drawing your polygons.

(b) Graduate students only: For evaluation purposes use only these sites

Discuss how good" your method was.
(c) Now use these sites below as your "grand truth" to assess what you did under (b). Think about why we can't do the evaluation using (a).

2. Determine the regional precipitation for a $259 \mathrm{~km}^{2}$ large drainage basin for the following precipitation event alternatively using the arithmetic average method (Eq. (1)), the isohyets method (Eq. (2)) (All students), and the polygon method (Eq. (3)) (graduate students). The first table gives the precipitation values; the second provides information about the isohytes. Precipitation measurements are daily accumulated values in mm. The sites g_{7}, g_{4}, g_{5} and g_{6} are located outside the basin at a similar distance to the borders as the sites located inside the basin are located to the borders, i.e. they can be assumed as being representative for the domain. When building the polynominal areas, the polynominal areas of sites g_{7}, g_{4} and g_{5} do not cover any area of the basin. The weights for the polygon areas covering areas within the basin are 30, 114, 36, and $79 \mathrm{~km}^{2}$ for $\mathrm{g}_{3}, \mathrm{~g}_{1}, \mathrm{~g}_{6}$ and g_{2}, respectively. Hint: Start out to determine n as is needed. Recall the formulas are

$$
\begin{align*}
& P= \frac{1}{n} \sum_{i=1}^{n} P_{i} \tag{1}\\
& P=\frac{1}{A} \sum_{j=1}^{n} P_{i} a_{i} \quad \text { with } \sum_{i=1}^{n} a_{i}=A \tag{2}\\
& P=\frac{1}{A} \sum_{i=1}^{n} a_{i}^{\prime} P_{i} \quad \text { with } \sum_{i=1}^{n} a_{i}^{\prime}=A \tag{3}
\end{align*}
$$

Date	g_{1} mm	g_{2} mm	g_{3} mm	g_{4} mm	g_{5} mm	g_{6} mm	g_{7} mm
$6-11-2017$	67	115	34	55	44	84	107
$6-12-2017$	0	0	2	8	4	0	0

With a_{i} being
ai

g1	37
g2	35
g3	39
g4	37
g5	36
g6	38
g7	37

And the a'i being $\Delta \mathrm{A}$ as in the following table.

Isohyte mm	mean P mm	$\Delta \mathrm{A}$ km^{2}
<40	38	2
$40-50$	45	24
$50-60$	55	32
$60-70$	65	22
$70-80$	75	52
$80-90$	85	51
$90-100$	95	34
$100-110$	105	32
>110	115	10

Discuss what the differences mean in terms of total water received by the watershed.

